KNOWLEDGE GUIDED MACHINE LEARNING ADVANCES THE SCIENCE OF LIMNOLOGY
Submitted by: Paul Hanson, University of Wisconsin - Madison
Authors:
Paul Hanson, University of Wisconsin - Madison, Center for Limnology (pchanson@wisc.edu)
Cayelan Carey, Virginia Tech, Biological Sciences (cayelan@vt.edu)
Arka Daw, Virginia Tech, Computer Science (darka@vt.edu)
Hilary Dugan, University of Wisconsin - Madison, Center for Limnology (hdugan@wisc.edu)
Xiaowei Jia, University of Pittsburgh, Computer Science (XIAOWEI@pitt.edu)
Anuj Karpatne, Virginia Tech, Computer Science (karpatne@vt.edu)
Ankush Khandelwal, University of Minnesota, Computer Science (ankush.kwal@gmail.com)
Robert Ladwig, Aarhus University, Department of Ecoscience (rladwig@ecos.au.dk)
Mary Lofton, Virginia Tech, Biological Sciences (melofton@vt.edu)
Bennett McAfee, University of Wisconsin - Madison, Center for Limnology (bmcafee@wisc.edu)
Abhilash Neog, Virginia Tech, Computer Science (abhilash22@vt.edu)
Jordan Read, The Consortium of Universities for the Advancement of Hydrologic Science, Inc. (jread@cuahsi.org)
Sophia Skoglund, University of Wisconsin - Madison, Center for Limnology (skskoglund@wisc.edu)
Kathleen Weathers, Cary Institute of Ecosystem Studies (weathersk@caryinstitute.org)
Vipin Kumar, University of Minnesota, Computer Science (kumar001@umn.edu)
KNOWLEDGE GUIDED MACHINE LEARNING ADVANCES THE SCIENCE OF LIMNOLOGY
Category
Scientific Sessions > SS17 - Data-Intensive Research Builds Understanding of Aquatic Ecosystem Responses to Change at Regional to Global Scales
Description
Preference: Oral